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Abstract 

Early specification of materials in buildings before their 

demolition could foster reuse in the construction industry. 

Studies have already shown the usefulness of machine 

learning in demolition waste estimation; however, 

application to real-world datasets is still limited. This 

study tests the feasibility of predicting recoverable 

material stock in the local context of the city of Zurich. 

The results show promise for the overall approach, 

although training models by using a small and 

heterogeneous dataset poses challenges. Therefore, we 

conceptualized an improved demolition data collection, 

processing, and dissemination. The resulting framework 

could help researchers and authorities in urban material 

stock estimation. 

Introduction 

The building floor area is expected to rapidly expand in 

the next couple of decades, even in already densely 

urbanized parts of the world like Europe (UN 

Environment and International Energy Agency, 2017). 

This trend raises questions about the continuous 

generation of construction and demolition waste and the 

growing demand for raw materials in new buildings. 

Indeed, the construction industry is already one of the 

most significant carbon emitters and waste producers 

globally (Akhtar and Sarmah, 2018; European 

Commission, 2016). Using the retiring building stock as a 

mine for secondary materials for new construction would 

help the industry lower its environmental impact. To do 

so would require information about the suitability for 

recycling and reusing materials in existent buildings 

before their decommission. Such information could help 

organize a circular project’s logistics, estimate demolition 

and recycling costs, and prioritize interventions of reuse 

agents. 

Unfortunately, existing buildings are rarely represented, 

e.g. in BIM or CAD drawings. Reconstructing an existing 

building’s inventory, either manually or with the help of 

advanced technological methods like scan-to-BIM, tends 

to be time- and resource-intensive. Such reconstruction 

often has severe limitations, for example when elements 

are hidden under a building’s outer layer (Honic et al., 

2021). A more scalable approach to characterize urban 

material stocks is the bottom-up development of so-called 

archetypes, often categorized by e.g. a building’s age and 

its primary function (e.g. TABULA WebTool, 2015). The 

developed archetypes are sometimes extrapolated to an 

urban scale to estimate a city’s material stock and predict 

material flow (Heeren and Hellweg, 2018; Ostermeyer et 

al., 2018). Their development requires thorough in situ 

visits and access to detailed building documentation. The 

final estimation relies on the granularity of the developed 

typologies.  

As an emerging approach, we identified three studies that 

explore data-driven modeling for detecting material 

presence and estimating bulk waste in buildings. Akanbi 

et al. (2020) developed a deep learning algorithm that 

predicts the amount of demolition waste in three 

categories: reusable, recyclable, and disposable. The 

trained model exhibits a strong skill, but it requires 

information on a building’s structural material as an input. 

This information is not always straightforward to obtain. 

Moreover, the model’s output lacks sufficient granularity 

for planning material recovery (i.e. for amounts of 

specific materials). Cha et al. (2020) presented a 

methodology using a random forest machine-learning 

algorithm to estimate demolition waste per material type, 

usable for small datasets and with mixed (i.e. continuous 

and categorical) inputs. Both studies trained models on 

labeled datasets, obtained either from the private sector or 

during previous research efforts. In contrast, Wu et al. 

(2022) propose public datasets (Gothenburg and the 

Stockholm City Archives) as a possible source of building 

material information to create a dataset to predict 

hazardous materials. Nevertheless, their model output is 

only binary (i.e. a hazardous material type is detected or 

not detected) and does not predict the material stock 

composition. 

This study builds on the above research to develop a data-

driven material stock estimation, applicable to available 

datasets in the local context of Zurich. We merge open-



 

 

access cadastre data with local semi-open demolition 

audit records into a new dataset of 409 residential 

buildings. We then trained three types of algorithms: 

linear regression (LR), random forest regressor (RFR), 

and the extreme gradient boosting (XGBoost). The 

introduced proof of concept allows for the prediction of 

amounts of wood, mineral, metal, glass, and roof tile 

materials in the residential building stock. The available 

data quality sometimes posed challenges, as was reflected 

in the results. Therefore, the paper conceptualizes a 

framework for data collection, processing, and 

dissemination to help establish a more structured, quality-

assured, and up-to-date material stock dataset at the urban 

level. 

Methodology 

The scope of this study is limited to residential buildings 

raised between 1850 and 1973 in Zurich, a time frame 

based on data available. We used a residential sample 

because, according to Zurich’s Statistics Office (Stadt 

Zürich, 2022), more residential than non-residential 

buildings were demolished in the city in recent years. 

Furthermore, the ability of machine learning (ML) models 

for generalization (i.e. to adapt prediction to new 

instances) was assumed more challenging on a non-

residential sample because commercial, educational, or 

office buildings usually exhibit a higher variety of spatial 

designs. 

Four methodological steps helped estimate recoverable 

amounts of materials per building (visualized in Fig.1): 

(1) data collection, (2) data frame preparation, (3) the 

model training process, and (4) evaluation of the models. 

The first three steps are discussed below; step 4 is 

discussed in the results section. 

Data Collection 

In supervised machine learning, a labeled dataset is used 

to train a model. Features (X) are independent variables 

in the dataset, used as input to make a prediction. Labels 

(Y) are dependent variables – values that one wants to 

predict. In this study, a custom collection of relevant 

building attributes serves as features X, and amounts of 

specific materials (in metric tons) become labels Y. To 

create a machine-readable dataset, consistent records on 

both X and Y needed to be identified and merged. Ideally, 

features X needed to contain openly accessible 

information to ensure that a trained model can be easily 

used for an instant estimation of the amount of materials 

in a building. Characterization of two data sources used in 

this study is provided in Table 1. 

The Gebäude- und Wohnungsregister (GWR, or the 

Federal Register of Buildings and Dwellings) grants 

public access to a set of attributes for all buildings in 

Switzerland. The attributes can be queried by the 

Eidgenössische Gebäudeidentifikator (EGID, or the 

Federal Building Identification Number) which can be 

found by a building’s postal address. The features X of a 

building were extracted from this database with a custom 

Python script and included: footprint area, gross volume, 

year of construction, period of construction, number of 

stories, and number of apartments.  

In parallel, the Umwelt- und Gesundheitsschutz Zurich 

(UGZ, or the Office of Environmental and Health 

Protection Zurich) provided access to disposal concepts 

as a source of information for labels Y. Disposal concepts 

(as .pdf or .jpg formats) must be submitted to the UGZ 

office before a building is renovated or demolished. The 

focus of this process is to specify expected hazardous 

materials, but documents also need to include a table with 

types, volumes, and/or weights of non-polluted materials 

in a building. The estimation is made by an expert 

conducting a building audit. This study used all available 

records on full demolitions of residential buildings 

between 2018 and 2022. The final dataset acquired from 

UGZ equaled 206 demolition projects.  

Data Preparation 

Among the 206 demolition projects acquired from UGZ, 

there were multiple cases of more than one building per 

project (such as demolition of a whole neighborhood). 

 

Table 1: Characterization of the two used data sources. 

Source UGZ GWR 

Relevant 

information 

available 

Weight and/or 

volume for 2 to 40 

material types; 

images of 

buildings; address 

Footprint area, gross 

volume, year and 

period of 

construction, stories, 

and apartments count 

Data format 

and 

resolution 

.pdf or .jpg; data 

per demolition 

project 

.csv; data per 

building 

Set size 206 projects > 400,000 buildings 

Figure 1: The four methodological steps. 



 

 

Additionally, only 124 instances followed a material table 

format recommended for disposal concepts, see 

Entsorgungskonzept Rück- und Umbau, 2020. Even 

among these instances, most customized the format, thus 

impeding the use of automated extraction of information. 

Such inconsistency in data format required a manual and 

time-consuming data parsing process. 

The quality of records also strongly varied. The number 

of materials declared in different demolition projects 

ranged from 2 to 40 different types. The presence of some 

materials was not recorded enough times in the whole 

sample for it to be useful in the ML training (e.g., 

gypsum). Other materials (e.g. contaminated wood or 

road rubble), were of no interest for this study’s focus on 

recovering building materials. Some categories were 

defined too broadly (e.g. as unsorted mixed waste or 

burnable waste). Finally, five labels were chosen for Y: 

wood, metal, roof tile, glass and mineral (‘mineral’ 

defined as a mixture of exclusively mineral waste such as 

concrete, brick, sand lime, and natural stone; see BAFU, 

2006). Not all 206 projects had information on all five 

chosen labels, which resulted in different sizes of training 

sets per material. 

To arrive at a structured data frame with the labels Y in a 

uniform unit, the inconsistent format of records required 

making assumptions (listed in Table 2). To complete the 

datasets, a roof type (flat, mansard, pitched, or mixed) was 

manually assigned to a building based on photos in UGZ 

records. The hypothesis was that different roof types 

could significantly affect the amount of waste (especially 

wood) obtained from a building. 

Finally, missing volume attributes were filled by 

importing publicly available CityGML LoD 2.3 models 

of Zurich (geocat.ch, 2018) into the Rhino environment 

and calculating the volume with a custom Grasshopper 

script. The final data frame constituted 409 data points 

with the characteristics presented in Table 3. 

 

Table 2: Necessary assumptions made to prepare a consistent 

data frame. 

Inconsistency Assumption 

Volume (V [m3]) was 

sometimes recorded in 

‘compact’ and sometimes 

in ‘loose’ categories 

V_loose = 1.3 ∗ V_solid 

Some demolition projects 

encompassed auxiliary 

buildings (i.e. sheds, 

garages) 

V_ residential = 

0.9 ∗ V_total 

Amounts recorded as 

volume needed to be 

converted to mass 

The assumed density of a 

material = average density 

of corresponding materials 

(see KBOB, 2016) 

A demolition project 

encompassed more than 

one residential building 

and Y values were 

aggregated per project 

Y_individual_building = 

Y_demolition_project * 

the building’s percent 

volume contribution 

Model Training 

Predicting a continuous value Y from the set of features 

X is a regression problem. For this study, we performed a 

regression on a heterogeneous and small dataset that was 

limited by data availability. These boundaries determined 

the choice of the ML models and the overall training 

strategy. Two tree ensemble models, namely Random 

Forest Regressor (RFR) and XGBoost (XGB), were tested 

and compared with a third model - linear regression (LR). 

All three models were trained in Google Colab notebook 

using Python and Scikit-learn library tools. The choice of 

RFR was considered applicable to the problem for two 

reasons: it can handle mixed input (categorical and 

continuous data) and it is also applicable to a small sample 

size (Cha et al., 2020). The second ensemble tree 

algorithm used in this study (XGB) uses boosting instead 

of bagging technique while combining results from N 

learners into the final result. The LR served as a baseline 

model for the performance evaluation of the other models. 

Only 140 of the total 409 buildings had information on all 

five investigated materials at once, meaning that one or 

more labels per building were missing for most cases. 

Reducing the training set to 140 instances was expected 

to extremely compromise the models’ performance. 

Instead of developing a model which would predict all the 

labels at once, separate models for every single label were 

developed. 

To clean the data frame for ML training, we first 

eliminated ‘not a number’ (NaN) values in the dataset’s 

labels. Then, we handled outliers per each continuous 

feature with the interquartile range (IQR) method. IQR 

equals a difference between the third and the first quartile 

of a sample (IQR = Q3 – Q1).The values bigger than Q3 

+ 1.5 ∗ IQR or smaller than Q1 – 1.5 ∗ IQR were 

consequently dropped from the set. The final number of 

data points used for training the models is summarized in 

Table 4. 

 

Table 3: Characterization of features and labels in the 

assembled data frame of 409 buildings. 

Features (X)/Labels (Y) Data type Unit/Count 

X: Gross volume continuous m3 

X: Footprint area continuous m2 

X: Apartments count continuous - 

X: Stories count continuous - 

X: Location (district) categorical 12 categories 

X: Location (zipcode) categorical 21 categories 

X: Year of construction continuous - 

X: Period of construction categorical 6 categories 

X: Roof type categorical 4 categories 

Y: wood/ metal/ roof tile/ 

glass/ mineral 

continuous t 

 

 



 

 

Table 4: Number of data points used for training supervised 

machine models, per material type. 

wood metal roof tile glass mineral 

286 277 213 283 309 

 

Next, exploratory data analysis was conducted to reveal 

important statistical characteristics of a sample and 

correlations between features (the results of the pre-

training sample analysis are described in the results 

section). The Pandas library and the One-Hot Encoding 

method were used to encode categorical features as 

machine-readable binary vectors. Additionally, feature 

scaling was implemented in the LR model due to its 

sensitivity to non-normalized inputs. In all the models, 

splitting the dataset into test and train sets posed a 

challenge due to the size and heterogeneity of the data. 

Even though the data is always shuffled before splitting, 

in small datasets the results on a test set can be biased if 

the test set has different distribution from a train set. To 

address this limitation, the Kolmogorov-Smirnov (K-S) 

statistical test was implemented. It allowed us to pick a 

split that ensured relative statistical similarity between the 

test and train sets for all the models. The holdout test set 

always constituted 15% of the sample (regardless of 

material type) and was used as the final estimation of 

models’ performance, after their training and validation.  

In two ensemble tree models, a hyper-parameters search 

was performed in a Stratified K-Fold Cross-Validation on 

the remaining 85% of the sample. Cross-validation was 

used with ten folds for metal, mineral waste, and wood, 

and with five folds for the two smaller samples (glass and 

roof tile). The baseline LR model did not require 

hyperparameters tuning and therefore does not have a 

separate validation set. A tree ensemble model training 

steps can be followed in Fig. 2, on the example of the 

wood sample. 

Model Evaluation 
 

In the final step, models were evaluated on the holdout 

test set by two chosen metrics: R-squared and mean 

absolute error (MAE). R-squared metric needs to be 

maximized and MAE needs to be minimized (yi = true 

value, 𝑦 = mean true value, yi-hat = predicted value, n = 

sample size), as displayed in Eq. (1) and (2). 

 

𝑅2 = 1 −
(yi − 𝑦�̂�)

2

(𝑦𝑖 − 𝑦 )2
 

(1) 

 

𝑀𝐴𝐸 =
∑ (yi − 𝑦�̂�)

𝑛
𝑖=1

𝑛
 

(2) 

Results 

Exploratory Data Analysis 

The results showed that most of residential buildings 

demolished in Zurich from 2018 to 2022 had an average 

life cycle of 70 to 90 years. Most of the sample represents 

single-family houses (1 apartment) and multi-family 

houses (6–7 apartments). A typical building’s volume is 

1500 to 2000 m3
 and a typical footprint is 170 m2. Before 

outlier removal, the distribution of all continuous features 

was strongly right-skewed (i.e., most of the sample was in 

a low-value area with strong outliers in a high-value area). 

It was also observed how imbalanced the classes in 

categorical features were. Specific locations in the city 

(Kreis 8 or 12 and zip codes 8003, 8008, 8045, and 8051) 

were highly underrepresented due to the specific 

characteristic of the collected sample available at UGZ.   

Figure 2: A machine-learning tree ensemble model training process visualized on the example of the wood sample. 

 

Figure 2: A machine-learning tree ensemble model training process visualized on the example of the wood sample. 

 



 

 

The strongest linear correlation for all the materials was 

the one with the volume feature. Wood and mineral were 

also correlated with the footprint area. Mineral amounts 

seemed to be bigger, the newer the buildings were. Linear 

correlation between other materials and buildings’ year of 

construction or a roof type was much weaker or non-

existent.  

Material Prediction 

The overall results across the material datasets and trained 

models are evaluated with R-squared and MAE metrics 

(represented in Fig. 3 and Table 5). 

Next to the achieved performance on the test sets, the 

context of training and validation results helps to assess a 

model’s skill. A significant difference between training 

and testing results is usually indicative of the model’s 

overfitting (high variance error). On the contrary, a small 

difference, but poor performance on both sets, is usually 

indicative of underfitting (high bias error). Both tree 

ensemble models outperform the LR model, but exhibit 

overfitting of the data, which is especially pronounced in 

the case of the XGBoost model. 

Prediction of mineral, wood, metal, and glass quantities 

predicted by XGB overall proved the most successful, 

with R-square between 0.59 and 0.70. However, the 

results from the RFR model follow those of XGBoost 

very closely with the better generalization pattern. The 

assessment with MAE metric speaks slightly in favor of 

 

Table 5: Mean absolute error (MAE) for predictions from all 

models, for a test set only, across all the materials. All values 

are expressed in metric tons and can be interpreted per 

sample, relative to its standard deviation (std, in grey). The 

best result per sample is marked in green. 

MAE [t] wood mineral metal tile glass 

std 17.41 265.19 41.57 7.72 2.96 

LR 8.81 127.59 16.20 4.40 1.69 

RFR 7.27 72.09 13.49 3.50 1.05 

XGB 6.53 74.93 12.23 3.99 1.08 

the RFR model, however the difference in the results from 

both tree ensemble algorithms is small. 

Since MAE is a metric relative to a sample, it should not 

be used for a direct comparison across samples. It is 

useful, however, to consider a significance of an error, per 

sample, relative to the sample’s standard deviation (see 

Table 5). The smallest error achieved for wood was 6.53 t 

(standard deviation = 17.41 t), 72.09 t for mineral (std = 

265.19 t), 12.23 t for metal (std = 41.57 t), and 1.05 t for 

glass (std=2.96 t).  

The baseline LR model generalizes well on wood and 

metal samples (see Fig.3 left), but it suffers from an 

expected high bias error, indicating that the model is not 

able to learn sufficiently from the training data. 

Prediction of roof tile quantities is considered 

unsuccessful for all tested algorithms, with R-squared 

value between 0.01 and 0.14 on the test set. Possible 

reasons and implications of specific results are discussed 

in the next section. 

Discussion 

Interpretation of results 

The methodology delivers promising results for 

approximating the amounts of materials in buildings 

before demolition. The trained models can be applied to 

residential buildings and render a prediction, without the 

need for extensive documentation or in situ visits. The 

only information needed is a set of general building 

attributes, which can be queried from a local building 

register (e.g., GWR) or recognized from a building’s 

image. The two investigated ensemble tree models (RFR 

and XGB) rendered very similar results, although RFR 

was more straightforward to train for a satisfactory 

learning skill. The XGB is a more complex algorithm than 

its counterpart, requiring more time and experience in the 

process of tuning hyperparameters. It is possible that in 

this study, XGB was too powerful for such a noisy 

dataset, which resulted in more pronounced overfitting. 

Having said that, the model’s performance could possibly 

be further improved. This might be especially worthwhile 

when working with a bigger, quality-assured data sample. 

Figure 3: Comparison of the models’ performance across the five investigated materials using the R-squared metric. Results are 

shown for the training, validation, and testing stage. 

 



 

 

The trends and differences between the two ensemble tree 

algorithms are in line with the experience of other 

researchers and practitioners (Mehta et al., 2019). 

The dataset itself is considered the major limiting factor 

for the ML models’ predictive skills. Insufficient training 

data is bound to compromise models’ learning process. 

Indeed, the two smallest label sets (roof tile and glass) 

posed the most difficulties while training the models and 

rendered the weakest predictions. But even the bigger 

label sets could benefit from more and better-quality data. 

In addition to the amount of data, some materials had 

ambiguity in their input data classification, e.g., roof tile 

was sometimes reported within the general mineral waste 

category instead of in its own. This could further explain 

the poor prediction skill for these materials. 

The class imbalance in categorical features (i.e., a 

significant variation in the number of instances per class) 

was acknowledged as a potential negative factor for ML 

performance, but its impact was not confirmed. It is 

possible that the negative impact was partially mitigated 

by using redundant features (two features describing 

location, and two features describing a building’s age). In 

this proof of concept, the feature importance analysis and 

the impact of imbalanced or redundant features were not 

thoroughly analyzed and should be explored in detail in 

further studies.  

A Data Architecture for Continuous Learning 

Even though data availability was considered sufficient 

for the proof of concept, the results showed that further 

research and application of predictive models in this 

domain would highly benefit from a bigger, quality-

assured dataset. To increase the prediction reliability, 

disposal proofs instead of disposal concepts could be used 

as data input. The former contains data on the material 

amounts reported after a demolition, while the latter only 

relies on pre-demolition audits. At the time of writing, the 

number of demolition proofs at UGZ constituted only 

roughly 5 percent of the overall building data, which is 

highly insufficient for ML model training. Nevertheless, 

data from disposal concepts alone could be collected and 

processed more automatically to save time and effort. In 

addition, a sample’s representativeness over time is 

important if the goal is a continuous real-world 

application in the future. The current methodology only 

renders static models and is limited to making guesses on 

a ‘frozen snapshot’ of time. A continuously updated 

dataset would strongly improve a model’s performance. 

Figure 4: Bottom: A proposed concept of a framework. Data on material amounts in buildings is collected in a 

structured manner and then automatically processed and shared. Top Left: A mockup of a ‘Material form’ in a 

proposed online customer portal. Top Right: A mockup of a City Twin interface. 

 



 

 

Therefore, we conceptualize a framework for improving 

the process of collecting, storing, and disseminating data 

on building materials in the existing buildings in Zurich 

(see Fig. 4). We consider it the next necessary step toward 

a dynamic ML model for the continuous prediction of 

material stock in buildings. A vast collection of quality-

assured, consistent data would lay a foundation for further 

exploration of predictive algorithms, thus minimizing 

uncertainties stemming from the data quality. The 

proposed data architecture can be followed in Fig. 4 and 

is described in detail in the next paragraph. 

The data pipeline starts as in the current process with the 

building owner submitting material information, 

supported by an authorized expert. Information about 

contaminated and non-contaminated materials would be 

recorded directly in the 'Material Form' in an online 

customer portal. A standardized form would help to 

eliminate the problem of multiple formats, ambiguous 

information, and missing documentation. For example, it 

would assure that materials are reported in their respective 

categories instead of being aggregated. For example, roof 

tile would need to be documented separately from the rest 

of mineral waste. Furthermore, building component 

information, useful for estimating reuse potential, could 

be requested (e.g., number of windows, sinks, doors, 

radiators). Adding this requirement could specifically 

help with estimating buildings component stocks, which 

is currently rarely present at the urban scale (Arora et al., 

2019). 

If such a form were filled out and submitted, data would 

flow to two separate databases. For the first, a .pdf would 

be sent to a UGZ employee for verification and 

conformity with current UGZ processes. The second 

database would store the information in a machine-

readable format connected to related servers through a 

REST API client-server architecture. Material 

information could thus be merged for completeness with 

other building attributes accessed from external 

databases, e.g. GeoAdmin API, 2022. A continuous ML 

training pipeline would fetch the latest instances of 

complete data information to update the material stock 

forecasts. Stakeholders could then access and query up-

to-date estimations of material amounts per building using 

a City Twin platform (such as LUUCY, 2022) for 

accessing other open-access building information. 

The proposed framework is based on observed existing 

processes in the regulatory agencies and stakeholders’ 

landscape of the City of Zurich. The automated data 

collection with an anonymization function addresses the 

problem of data inaccessibility due to privacy issues. 

Overall, the proposed process could expand the focus of 

the regulatory stakeholder from simply avoiding 

hazardous materials to supporting recovery of non-

contaminated materials. Since similar demolition data is 

gathered throughout Switzerland (VVEA, 2020), other 

cities and authorities on a cantonal level could also benefit 

from the framework. Further research would need to 

specify the technical details of the framework and validate 

its applicability with different stakeholders. We expect 

that the global circularity movement in resource 

management would act as a motivating factor to embrace 

the proposed approach. 

Conclusions 

This paper showed the feasibility of applying a data-

driven approach to material stock quantification in 

buildings, for available open and semi-open data in the 

City of Zurich. The amounts of five chosen material types 

can be predicted from the publicly available set of 

features. Both ensemble tree algorithms tested in this 

study exhibit a reasonable skill and strongly outperform 

the baseline LR model. Nevertheless, our findings show 

that only specific materials in a building stock could be 

predicted due to insufficient data. Even though it is 

important to further research and compare ML algorithms 

suitable for the investigated task, we therefore find it 

imperative to create reliable datasets first. To address this, 

we propose a new framework for the collection, 

processing, and dissemination of the data on buildings’ 

materials and components. The framework relies on 

information already gathered by a city regulatory body 

and could modernize existing workflows by connecting 

public and private stakeholders. It would also benefit 

future researchers in their exploration of a broader 

spectrum of predictive algorithms in the domain. 

Although targeted to the context of the city of Zurich, 

other cities and municipalities could potentially adopt the 

framework to foster the circularity of construction 

materials and components at the urban scale. 
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